plot函数的一般的调用形式:
#单条线:
plot([x], y, [fmt], data=None, **kwargs)#多条线一起画plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)可选参数[fmt] 是一个字符串来定义图的基本属性如:颜色(color),点型(marker),线型(linestyle),具体形式 fmt = '[color][marker][line]'
fmt接收的是每个属性的单个字母缩写,例如:
plot(x, y, 'bo-') # 蓝色圆点实线
若属性用的是全名则不能用*fmt*参数来组合赋值,应该用关键字参数对单个属性赋值如:plot(x,y2,color='green', marker='o', linestyle='dashed', linewidth=1, markersize=6)
plot(x,y3,color='#900302',marker='+',linestyle='-')
常见的颜色参数:**Colors**
也可以对关键字参数color赋十六进制的RGB字符串如 color='#900302'============= ===============================
character color ============= =============================== ``'b'`` blue 蓝 ``'g'`` green 绿 ``'r'`` red 红 ``'c'`` cyan 蓝绿 ``'m'`` magenta 洋红 ``'y'`` yellow 黄 ``'k'`` black 黑 ``'w'`` white 白 ============= =============================== 点型参数**Markers**,如:marker='+' 这个只有简写,英文描述不被识别============= =============================== character description ============= =============================== ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker ============= ===============================线型参数**Line Styles**,linestyle='-'============= ===============================
character description ============= =============================== ``'-'`` solid line style 实线 ``'--'`` dashed line style 虚线 ``'-.'`` dash-dot line style 点画线 ``':'`` dotted line style 点线 ============= ===============================样例1函数原型:matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
>>> plot('xlabel', 'ylabel', data=obj)解释:All indexable objects are supported. This could e.g. be a dict, a pandas.DataFame or a structured numpy array.data 参数接受一个对象数据类型,所有可被索引的对象都支持,如 dict 等import matplotlib.pyplot as plt import numpy as np'''read file fin=open("para.txt")a=[]for i in fin: a.append(float(i.strip()))a=np.array(a)a=a.reshape(9,3)'''a=np.random.random((9,3))*2 #随机生成yy1=a[0:,0]y2=a[0:,1]y3=a[0:,2]x=np.arange(1,10)ax = plt.subplot(111)width=10hight=3ax.arrow(0,0,0,hight,width=0.01,head_width=0.1, head_length=0.3,length_includes_head=True,fc='k',ec='k')ax.arrow(0,0,width,0,width=0.01,head_width=0.1, head_length=0.3,length_includes_head=True,fc='k',ec='k')ax.axes.set_xlim(-0.5,width+0.2)ax.axes.set_ylim(-0.5,hight+0.2)plotdict = { 'dx': x, 'dy': y1 }ax.plot('dx','dy','bD-',data=plotdict)ax.plot(x,y2,'r^-')ax.plot(x,y3,color='#900302',marker='*',linestyle='-')plt.show() 样例2,import matplotlib.pyplot as plt
import numpy as np x = np.arange(0, 2*np.pi, 0.02) y = np.sin(x) y1 = np.sin(2*x) y2 = np.sin(3*x) ym1 = np.ma.masked_where(y1 > 0.5, y1) ym2 = np.ma.masked_where(y2 < -0.5, y2) lines = plt.plot(x, y, x, ym1, x, ym2, 'o') #设置线的属性plt.setp(lines[0], linewidth=1) plt.setp(lines[1], linewidth=2) plt.setp(lines[2], linestyle='-',marker='^',markersize=4) #线的标签plt.legend(('No mask', 'Masked if > 0.5', 'Masked if < -0.5'), loc='upper right') plt.title('Masked line demo') plt.show() 参考自:https://blog.csdn.net/sinat_36219858/article/details/79800460